DISCUSSION OF THE DESIGN FOR A FUSION SPACE PROBE - VIPER PULSED FUSION ROCKET

George H. Miley

NPL Associates INC and U of Illinois

Akshata Krishnamurthy, George Chen, Paul Keutelian, and Ben Ulmen

University of Illinois, Urbana Champaign

Contents

- Overview of prior IEC fusion propulsion manned mission concepts
- VIPER unmanned mission concept and capabilities
- HIIPER EP concept => development Path to Viper
- HIIPER experiment progress
- Conclusion

Overview of Prior Fusion Space Propulsion Concepts

A variety of fusion propulsion concepts were surveyed by C. H. Williams and S. Borowski (NASA Glenn), 1997:

Objective of the 1997 survey:

- To provide a top-down, mission-driven approach where desired missions, trip times and payload mass fractions are specified first
- Using this, operation parameters specific power, specific impulse, structural mass, output power and thrust are determined
- This enables mission requirements to be specified, so better systems can be designed with further refinement
- The basis of the survey was the NASA SEI (Space Exploration Initiative) report (1988-1992)
- General consensus was that nuclear propulsion technology could shorten trip times and increase payload mass fractions by several orders-of-magnitude key to outer solar system explorations.

IEC based concepts: Fusion Ships I & II

- •Consists of 10 D-³He spherical IEC reactors and twin TWDECs
- Produces 300 MW of 14 MeV proton flux, converted to 178 MW of electric power
- 74 MW re-circulates to run the reactors, 100 MW used to drive ion thrusters, remaining rejected as waste heat
- A fusion fuel re-circulation system is operated continuously to separate ⁴He from the D-³He reactants.

- Twin 175 m long assemblies comprising of 5 D-3He spherical IEC reactors and a TWDEC each
- Generates 1394 MW of 14.7 MeV proton flux, converted to 1197 MW of electric power
- 242 MW of this re-circulates to run the reactors and 750 MW drives the ion thrusters
- A fusion fuel re-circulation system operates continuously
- Argon ion thrusters with specific impulse of 35,000 s and efficiency of 90% are employed

Fusion Ships I & II

	Fusion Ship I	Fusion Ship II
Overall Mass (Metric T)	500	500
Overall Length (m)	174	300
Number of crew	10	10
Thrust Power (MW)	86	750
Reactor Gain	4	9
Reactor Power (MW)	296	2178
Thrust system	Krypton ion	Argon ion
Specific impulse (sec.)	16000	35000
Jupiter one way trip time (days)	400	210

VIPER Schematic

- •The IEC reactor is fed highly ionized p-11B fuel by a permanent magnet helicon array
- Anisotropic alpha particles produced 10% directed to a DEC to produce electric power required to run reactors and for station-keeping, rest are magnetically collimated by a pair of Helmholtz coils, quasi-equilibrated with a neutral propellant such as hydrogen and exhausted through a magnetic nozzle to produce thrust
- Launch mass of 30 MT and total power production of 360 MW
- Variable specific impulse system enabling a variety of missions

Inertial Electrostatic Confinement

- Spherical electrostatic potential trap used to collide and fuse ionized hydrogen and boron-11.
- Mitigates thermal losses since the potential well establishes and maintains ion confinement
- Confinement times can be increased using multi-grid configuration – recently demonstrated experimentally by Ray Sedwick at U of Maryland.
- Prior shortcomings in plasma density hence helicon is used to provide high density plasma
- This helicon-fed IEC design is derived from HIIPER, an experimental electric propulsion system under evaluation at Univ. of Illinois

p-¹¹B: Nonradioactive Fusion Power

- Safe, naturally abundant nonradioactive Boron-11 fuel
- Highly charged fusion products (3α @ 8.7 MeV)
- Aneutronic minimal shielding from neutron flux required
- Ideal for space-based power systems

$$p + {}^{11}B \rightarrow 3 {}^{4}He + 8.7 MeV$$

System Parameters

	Power (kW)	Mass (MT)
	Primary Systems	
Helicon Array	1600	2
IEC	18000	8
Magnetic Nozzle	50	1.5
Capture Assembly	100	.5
M _{POW} (Marx, HPDEC, transformers)	-	4.5
	Secondary Systems	
Structure, shielding	-	7
Heat Radiators	1500	4
Injectors, tanks, lines, etc.	<1	.75
Guidance, computers, etc.	<1	.15
Scientific Payload	250	1.5
Total	21,500	29.9

Salient features of VIPER

- A plentiful and non-radioactive fuel p-11B is used
- Aneutronic fusion reduced neutron flux shielding
- Extremely high specific impulse: $10^4 10^6$ s
- Realizable near-term technology since IECs and Helicons are well-researched experimentally
- VIPER is the first step towards manned missions in the future
- Variable specific impulse enables a variety of missions

	Ideal	$f_{pps} = 12$, τ_p = 62.5 ms. \dot{m} = .25 g/s
	T _{AVG}	275 N
	I_{SP}	200,000 s
ASPW Hunts	ville Al. November 2012	$2.584 \times 10^{-4} \text{ kg/s}$

Mission capabilities

Fast Deep Space Probe

Pluto arrival < 1 year Sedna (518 AU) arrival < 5 years

Martian Heavy Lift

200 MT cargo ~ 120 days

Reusable Science Vessel

Extremely high ΔV allowing maneuverability, orbital transfers, sample return, etc.

IEC Fusion Ship II

VIPER Probe is more shuttle size vs. manned space ships

Viper PFR 30 MT Isp = 30,000,000 Thrust = 660 -1350 N

Artist's conception of VIPER (P. Keutelian, 2011)

Helicon-Injected Inertial Plasma Electrostatic Rocket (HIIPER) – development path to Viper

Objective – to develop a near-term electric thruster that uses much of the same physics as the VIPER fusion rocket. In this way progress towards VIPER can be made with a near-term pay-back

Introduction to HIIPER

- Helicon-injected IEC-Class Plasma Thruster
- Designed for interplanetary and deep space missions
- Highly Scalable (Variable specific impulse)
- Compact
- Simple design using commercially available helicon and IEC device
- Gas Versatile
- Reduced erosion of grid and plasma facing components higher operational lifetime
- Highly efficient due to nearly complete ionization of propellant by the Helicon source

HIIPER Concept

HIIPER Concept

- High density plasma is produced by the Helicon source
- Inertial electrostatic confinement accelerates plasma using a spherical diode configuration
- A thin plasma beam is produced due to asymmetry in the central cathode grid in "jet mode" operation.
- This plasma jet contains a significant fraction of the input energy

ASPW Huntsville Al. November

2012

Background – IEC Operation Modes

ASPW Huntsville Al. November

2012

Power balance

$$P_{Hel} + P_{IEC} = P_{Jet} + \left\{ P_{L,Hel} + P_{L,Coup} + P_{L,IEC} + P_{L,Prop} \right\}_{Losses}$$

Thrust estimate for experiment

Estimate for Argon:

Power into the helicon: 300 W

Power into the IEC: 30 W

At a voltage of 2kV in the IEC, exhaust velocity of the jet = 83000 m/s

Maximum theoretical thrust: 392 mN Allowing for 50% losses, thrust = 196 mN

HIIPER produces a thrust of 0.6 mN/W

NOTE: Conventional hall thruster would produce 0.06 mN/W.

Preliminary Work - Simulations

COMSOL Multiphysics:

Particle Trace:

Plasma Package:

Preliminary Work - Modeling of Helicon

 A set of coupled rate equations have been created to model the particle balance of the different species (e.g. neutrals and ions) and power carried by each species.

$$\frac{\frac{dN_n}{dt}}{\frac{Particles}{s}} = \underbrace{\begin{bmatrix} N_{n,in} \end{bmatrix} - \begin{bmatrix} N_{n,out} \end{bmatrix} - \begin{bmatrix} N_{n,ioniz} \end{bmatrix}}_{\frac{Particles}{s}}$$

$$\frac{\frac{dN_i}{dt}}{\frac{Particles}{s}} = \underbrace{\begin{bmatrix} N_{n,ioniz} \end{bmatrix} - \begin{bmatrix} N_{i,out} \end{bmatrix}}_{\frac{Particles}{s}}$$

$$\frac{\frac{dN_e}{dt}}{\frac{dt}{s}} = \underbrace{\begin{bmatrix} N_{n,ioniz} \end{bmatrix} - \begin{bmatrix} N_{e,out} \end{bmatrix}}_{\frac{Particles}{s}}$$

$$\frac{\frac{dN_e}{dt}}{\frac{dt}{s}} = \underbrace{\begin{bmatrix} N_{n,ioniz} \end{bmatrix} - \begin{bmatrix} N_{e,out} \end{bmatrix}}_{\frac{Particles}{s}}$$

Facilities

Vacuum System

- 22 inch spherical stainless steel IEC chamber
- Base pressure $<1x10^{-6}$ Torr, typical operating pressure ~ 1 mTorr
- Choice of argon, nitrogen, hydrogen gases

Facilities

Helicon Plasma Source

- 13.56 MHz RF power supply 1.2 kW max power with 1 kW max automatching network
- Quartz tube with copper strap m=+1 helical antenna
- 1200 Gauss maximum electromagnets
 - water cooled

IEC Device

- 50 kV, 50 mA power supply, 1 kW max power
- Custom built stainless steel grid

Initial Experiments

- Discovered jet mode pressure regime (~0.5 to 2.0 mTorr for visible jet)
- Made measurements of plasma floating potential of jet (up to -5.5 kV at -10.5 kV IEC grid operation – 1.5 mTorr)

Faraday Cup

- •Measures the total charge flow of the jet
- •The cup was made large and robust to deal with the high current and voltages while being able to dissipate heat quickly enough to avoid damage to the structure.
- •The cup has been custom-fabricated from alumina ceramic, stainless steel and aluminum.
- •The design also implements an outer grounded sleeve around the inner cup.
- •A resistance temperature detector (RTD) was used to measure the temperature increase on the faraday cup.

Rate of Temperature Rise with Increasing Input Power

•This data can be used to estimate the thermal power of the jet

Faraday Cup Temperature Sensor (dT/dt vs Power)

Current Measurements

Observations

Jet in to Faraday cup

Interesting structure of the plasma

ASPW Huntsville Al. November 2012

Summary

- HIIPER is a Helicon-fed IEC thruster
- Decoupling of Helicon and IEC stages enables variable impulse
- Improved fuel economy
- Light-weight device and simple in design
- Gas versatile
- Vectored thrust ability to rotate the IEC grid allowing control over the plasma jet direction
- Reduced erosion high lifetime
- Can be upgraded to a future fusion spacecraft

Conclusion

- VIPER is an unmanned fusion probe concept
- Simple design with fewer assumptions compared to previous manned propulsion concepts
- Use of p-¹¹B fuel facilitates aneutronic fusion hence less mass required for radiation protection
- Most of the fusion energy is used for direct thrust conversion, 10% to power reactor
- Performance characteristics are significantly higher than prior concepts

References

- Burton, R. L., Momota, H., Richardson, N., Shaban, Y., & Miley, G. H. (2003). Fusion Ship II: A Fast Manned Interplanetary Space Vehicle Uisng Inertial Electrostatic Fusion. Space Technology and Applications International Forum-STAIF, 553-562.
- Cox Jr., L.T., Mead Jr., F. B., & Choi, C. K. (1990). Thermonuclear reaction listing with cross-section data for four advanced reactions. *Fusion Technology*, 325-339.
- Hagerty, J., Rogers, J. Spaceship Handbook: Rocket & Spacecraft Designs of the 20th Century Fictional, Factional and Fantasy. ARA Press, Livermore, CA, 2001.
- Hora, H., Miley, G. H., Ghoranneviss, M., Malekynia, B., Azizi, N., & He, X.-T. (2010). Fusion energy without radioactivity: laser ignition of solid hydrogen-boron (11) fuel. *Energy and Environmental Science*, 479-486.
- Keutelian, Paul. Viper PFR. September 2011.
- Keutelian, Paul. Viper PFR Fusion System. September 2011.
- Landau, D. F., & Longuski, J. M. (2006). Trajectories for Human Missions to Mars, Part 2: Low Thrust Transfers. *Journal of Spacecraft and Rockets*, 1043-1047.
- Miley, George H. Fusion Energy Conversion. American Nuclear Society, Urbana, Illinois, 1976.
- Nadler, J. H., Miley, G. H., Coventry, M., Williams, M., Jurczyk, B., Stubbers, R., et al. (n.d.). High-Current Pulsed Operation of an Inertial-Electrostatic Confinement (IEC) Device. Champaign, Illinois, USA.
- Orcutt, John; et al., Viper PFR: Ultra High I_{SP} Pulsed Fusion Rocket, *JBIS*, Submission Pending, 2011.
- Wiebold, M., He, R., & Scharer, J. E. (n.d.). Neutral Depletion and Plasma Flows in a Pulsed High power Helicon Plasma. Madison, Wisconsin, USA.

Thank you for your attention!

For more information, please contact:

George H. Miley

ghmiley@illinois.edu